雖然有許多儀器可以精確地測(cè)量小的直流電流(最大3A),但很少有儀器可以精確地(好于1%)測(cè)量50A以上的直流電流。這么大的電流范圍是電動(dòng)汽車(EV)、電網(wǎng)能量存儲(chǔ)和光伏(光電)可再生能源裝置等的負(fù)載典型值。另外,這些系統(tǒng)需要精確地預(yù)測(cè)相關(guān)能量存儲(chǔ)電池的電荷狀態(tài)(SOC)。對(duì)電荷狀態(tài)的估計(jì)可以根據(jù)電流和電荷(庫(kù)倫計(jì)數(shù))測(cè)量實(shí)現(xiàn),而精確的測(cè)量數(shù)據(jù)對(duì)于精確的電荷狀態(tài)估計(jì)來(lái)說(shuō)是必要條件。
一般來(lái)說(shuō),用于電流或電荷測(cè)量的任何系統(tǒng)都設(shè)計(jì)包含有內(nèi)置數(shù)據(jù)采集部件,如合適的放大器、濾波器、模數(shù)轉(zhuǎn)換器(ADC)等。電流傳感器用于檢測(cè)電流。電流傳感器的輸出需要通過(guò)一個(gè)電路轉(zhuǎn)換成可用的形式(即電壓)。接著對(duì)信號(hào)進(jìn)行濾波,以減少電磁和射頻干擾。然后進(jìn)行放大和數(shù)字化。再將每個(gè)電流數(shù)據(jù)樣本乘以合適的時(shí)間間隔,(通過(guò)數(shù)字化計(jì)算)累加算出電荷值。
另一方面,如果以恒定不變的頻率進(jìn)行數(shù)字化,那么首先累積的電流樣本,然后當(dāng)累積電荷值被讀出或以某種方式利用時(shí)才乘以合適的時(shí)間間隔。同時(shí)需要考慮選擇合適的最小奈奎斯特采樣率,并在模數(shù)轉(zhuǎn)換器之前使用足夠窄的抗混疊濾波器。
 圖1:典型的現(xiàn)代電流測(cè)量系統(tǒng)中的信號(hào)鏈。
用于大電流測(cè)量的實(shí)用性傳感器技術(shù)
在用于測(cè)量大電流的技術(shù)中,有兩種傳感器技術(shù)最常見(jiàn)。第一種技術(shù)是檢測(cè)承載電流的導(dǎo)體周圍的磁場(chǎng)。第二種技術(shù)是測(cè)量承載待測(cè)電流(和電荷)的電阻(經(jīng)常稱之為分流器)上的壓降。這個(gè)壓降遵循歐姆定律(V = I × R)。
用于大電流測(cè)量的器件通常稱為霍爾效應(yīng)電流傳感器。這種傳感器內(nèi)置有一個(gè)載流元件。當(dāng)電流和外部磁場(chǎng)施加于該元件上時(shí),元件兩側(cè)會(huì)呈現(xiàn)一個(gè)垂直于電流方向并垂直于外部磁場(chǎng)方向的壓差。普通金屬中的霍爾效應(yīng)壓差值很小。值得注意的是,并不是所有測(cè)量載流導(dǎo)體周圍磁場(chǎng)的直流電流傳感器都是基于霍爾效應(yīng)。下面會(huì)簡(jiǎn)要介紹它們之間的區(qū)別。
大電流霍爾效應(yīng)傳感器
為了做成一個(gè)帶霍爾效應(yīng)器件的電流傳感器,需要用一個(gè)磁芯將導(dǎo)體電流周圍的磁場(chǎng)集中起來(lái),同時(shí)這個(gè)磁芯中要開(kāi)一個(gè)槽,用于容納實(shí)際的霍爾元件。尺寸相對(duì)較小的槽(相對(duì)于整個(gè)磁路長(zhǎng)度而言)會(huì)形成一個(gè)接近均勻且垂直于霍爾元件平面的磁場(chǎng)。當(dāng)霍爾元件獲得電流能量時(shí),將產(chǎn)生一個(gè)正比于勵(lì)磁電流和磁芯磁場(chǎng)的電壓。這個(gè)霍爾電壓經(jīng)放大后從電流傳感器的輸出端輸出。
 圖2:導(dǎo)體周圍磁場(chǎng)、線性開(kāi)環(huán)霍爾效應(yīng)傳感器和閉環(huán)傳感器示意圖。
由于載流導(dǎo)體和磁芯之間沒(méi)有電氣上的連接(耦合的只是磁場(chǎng)),傳感器實(shí)際上是與待測(cè)電路隔離的。載流導(dǎo)體可能有很高的電壓,而霍爾效應(yīng)電流傳感器的輸出可以安全地連接到接地電路,或連接到相對(duì)載流導(dǎo)體任意電位的電路,因此提供滿足最嚴(yán)格安全標(biāo)準(zhǔn)的間隙與爬電值也相對(duì)比較容易。
然而,這種線性傳感器也存在一些缺點(diǎn)。其中最不重要的缺點(diǎn)也許是霍爾效應(yīng)傳感器要求恒定勵(lì)磁電流這個(gè)事實(shí)。另外,處理來(lái)自霍爾效應(yīng)傳感器的信號(hào)的放大和調(diào)節(jié)電路通常要消耗顯著的能量。當(dāng)然,這個(gè)能耗也許不那么顯著,要看具體的應(yīng)用。盡管如此,用于連續(xù)測(cè)量電流的霍爾傳感器能耗也不能小至毫瓦級(jí)。
霍爾效應(yīng)傳感器:漂移大,可用工作溫度范圍小
因?yàn)榈湫偷木性傳感器輸出是按比例量測(cè)的(不僅取決于被測(cè)的磁場(chǎng)強(qiáng)度,而且取決于勵(lì)磁電流值),勵(lì)磁電流的穩(wěn)定性將極大地影響待測(cè)電流幅度以及沒(méi)有電流流動(dòng)時(shí)的零偏移。一般來(lái)說(shuō),后兩者都取決于供電電壓的穩(wěn)定和溫度變化(因?yàn)橛绊憚?lì)磁電流和霍爾電壓本身的霍爾傳感元件電阻取決于工作溫度)。
測(cè)量勵(lì)磁電流并在輸出中考慮該因素的傳感器變種是可能的。但它要求精密的外部元件和較大的處理電路。而且霍爾電壓是待測(cè)磁場(chǎng)的非線性函數(shù),這進(jìn)一步增加了傳感器的誤差。
因?yàn)樵诓煌瑮l件下會(huì)產(chǎn)生不同的誤差,大多數(shù)線性霍爾效應(yīng)器件制造商會(huì)將總的誤差分解成許多單獨(dú)的分量。有時(shí)很難計(jì)算總的合成誤差。 |